National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Least Weighted Absolute Value Estimator with an Application to Investment Data
Vidnerová, Petra ; Kalina, Jan
While linear regression represents the most fundamental model in current econometrics, the least squares (LS) estimator of its parameters is notoriously known to be vulnerable to the presence of outlying measurements (outliers) in the data. The class of M-estimators, thoroughly investigated since the groundbreaking work by Huber in 1960s, belongs to the classical robust estimation methodology (Jurečková et al., 2019). M-estimators are nevertheless not robust with respect to leverage points, which are defined as values outlying on the horizontal axis (i.e. outlying in one or more regressors). The least trimmed squares estimator seems therefore a more suitable highly robust method, i.e. with a high breakdown point (Rousseeuw & Leroy, 1987). Its version with weights implicitly assigned to individual observations, denoted as the least weighted squares estimator, was proposed and investigated in Víšek (2011). A trimmed estimator based on the 𝐿1-norm is available as the least trimmed absolute value estimator (Hawkins & Olive, 1999), which has not however acquired attention of practical econometricians. Moreover, to the best of our knowledge, its version with weights implicitly assigned to individual observations seems to be still lacking.
Various Approaches to Szroeter’s Test for Regression Quantiles
Kalina, Jan ; Peštová, B.
Regression quantiles represent an important tool for regression analysis popular in econometric applications, for example for the task of detecting heteroscedasticity in the data. Nevertheless, they need to be accompanied by diagnostic tools for verifying their assumptions. The paper is devoted to heteroscedasticity testing for regression quantiles, while their most important special case is commonly denoted as the regression median. Szroeter’s test, which is one of available heteroscedasticity tests for the least squares, is modified here for the regression median in three different ways: (1) asymptotic test based on the asymptotic representation for regression quantiles, (2) permutation test based on residuals, and (3) exact approximate test, which has a permutation character and represents an approximation to an exact test. All three approaches can be computed in a straightforward way and their principles can be extended also to other heteroscedasticity tests. The theoretical results are expected to be extended to other regression quantiles and mainly to multivariate quantiles.
Various Approaches to Szroeter’s Test for Regression Quantiles
Kalina, Jan ; Peštová, Barbora
Regression quantiles represent an important tool for regression analysis popular in econometric applications, for example for the task of detecting heteroscedasticity in the data. Nevertheless, they need to be accompanied by diagnostic tools for verifying their assumptions. The paper is devoted to heteroscedasticity testing for regression quantiles, while their most important special case is commonly denoted as the regression median. Szroeter’s test, which is one of available heteroscedasticity tests for the least squares, is modified here for the regression median in three different ways: (1) asymptotic test based on the asymptotic representation for regression quantiles, (2) permutation test based on residuals, and (3) exact approximate test, which has a permutation character and represents an approximation to an exact test. All three approaches can be computed in a straightforward way and their principles can be extended also to other heteroscedasticity tests. The theoretical results are expected to be extended to other regression quantiles and mainly to multivariate quantiles.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.